Florentine Marx-Ladurner, Ph.D., Associate Professor


Phone: +43/(0)512/9003-70207

Fax: +43/(0)512-9003-73100 



Short curriculum

1996 Ph.D. thesis "Phosphate and nitrogen regulated genes in Penicillium chrysogenum";
Department of Microbiology, Medical School, University of Innsbruck
1996-1999  Postdoctoral research fellow at the Institute of Biomedical Aging Research of the Austrian
Academy of Sciences in Innsbruck
1999  Research fellowship at the Institute of Virology and Environmental Microbiology of the National
Environmental Research Council in Oxford, UK
1999  Assistant Professor; Division of Molecular Biology, Biocenter, Innsbruck Medical University
2006 Habilitation (Venia docendi) for Microbiology
since 2007  Associate Professor; Division of Molecular Biology, Biocenter, Innsbruck Medical University


Research fields

Antifungal proteins in filamentous fungi


Research on antimicrobial peptides and proteins (AP) is a fast growing scientific field as these biomolecules represent promising candidates for novel drug development. APs have been identified in organisms belonging to most diverse classes. Most of them are active against a broad spectrum of microorganisms, including bacteria, fungi and even viruses. Although the primary amino acid sequence and the protein structure reveals a high diversity, most of these molecules share common structural and functional characteristics. They are small in size, cationic, and they contain 6-8 cysteine-residues which play an important role in protein folding, protein stabilization and antifungal activity.

Our specific interest lies in the identification and characterization of antimicrobial peptides secreted by filamentous fungi (Ascomycota). Most of these antimicrobial peptides/proteins inhibit the growth of plant-, zoo- and human pathogenic moulds, but are inactive against plant and mammalian cells. These findings strongly support their applicability in the prevention and treatment of fungal infection. A prerequisite for future drug development, however, is a detailed knowledge about their structure-function relation and their mode of action which is still not fully understood. In our present studies, we concentrate on the characterization APs that are secreted by the well-known antibiotic producing mould Penicillium chrysogenum. We aim at investigating the mode of action and the structure-function relation and at identifying the AP-specific fungal targets.


Participation in Service Units and Representation and Advice Groups

Member of the Working Group for Equal Treatment Issues

Substitute Member of the Comittee for Habilitation (Postdoctoral Qualification)

Mentor in the "Helene-Wastl" program for the support and promotion of female students and young female researchers



  • Austrian Science Fund FWF P 15261: "PAF, an antifungal protein, secreted by the filamentous fungus Penicillium chrysogenum"
  • Austrian National Bank ÖNB 9861: "The Penicillium chrysogenum antifungal protein PAF: a promising candidate for a new antifungal drug"
  • Foerderungsbeitrag der Universitaet Innsbruck (X8-2003): "The mechanism of action of PAF, an anti fungal protein secreted by Penicillium chrysogenum"
  • Foerderungsbeitrag der Universitaet Innsbruck (X34-2003; supplement to ÖNB 9861): "The Penicillium chrysogenum antifungal protein PAF: a promising candidate for a new antifungal drug"
  • D. Swarowski-Foerderungsfonds (FB2/06)
  • Austrian Science Fund FWF P19970-B11: "Studies on the toxicity of the Penicillium chrysogenum antifungal protein PAF"
  • Tyrolean Science Foundation (UNI-0407/504)
  • Österreichischer Austauschdienst ÖAD, WTZ Österreich-Slowenien (SI15/2009): "Studies on the mode of action of the antifungal protein PAF in filamentous fungi"
  • Österreichischer Austauschdienst ÖAD, Aktion Österreich-Ungarn (79öu1, 2010): " Struktur und Funktion des antifungalen Protein PAF aus Penicillium chrysogenum"
  • Österreichischer Austauschdienst ÖAD, Aktion Österreich-Ungarn (83Öu7, 2011): "Struktur und Funktion des antifungalen Protein PAF aus Penicillium chrysogenum" (Folgeantrag auf 79Öu1, 2010).
  • Austrian Science Fund FWF P25894-B20: "Hunting for new antifungal strategies: the antifungal protein PAF"
  • International Cooperation Project between Austrian Science Fund FWF - Hungarian Science Fund OTKA (I 1644-B20, 2014): "Structure and function of the antifungal proteins PAFB and NFAP"
  • International Cooperation Project between Austrian Science Fund FWF - Hungarian Science Fund NKFIH (I 3132-B21, 2016): “The gamma-core motif of antifungal proteins from Ascomycetes”
  • Austrian Science Fund FWF "Lise Meitner Program" (M1776-B20): "New antifungal strategies: structure and function of NFAP"
  • Austrian Science Fund FWF Doctoral Program 2018: "Host response in opportunistic infections" (HOROS)



From the online catalog of the Innsbruck Medical University (in German): Current lectures

From the online catalog of the University of Innsbruck (in German): Current lectures



  1. Marx, F., Haas, H., Hofer, S., Stöffler, G., and Redl, B. (1995). Sequence and structure of Penicillium chrysogenum phoG, homologous to an acid phosphatase-encoding gene of Aspergillus nidulans. Gene 160, 137-138.

  2. Marx, F., Haas, H., Reindl, M., Stöffler, G., Lottspeich, F., and Redl, B. (1995). Cloning, structural organization and regulation of expression of the Penicillium chrysogenum paf gene, encoding an abundantly secreted protein with antifungal activity. Gene 167, 167-171.

  3. Haas, H., Marx, F., Graessle, S., and Stöffler, G. (1996). Sequence analysis and expression of the Penicillium chrysogenum nitrate reductase encoding gene (niaD). Biochim. Biophys. Acta 1309, 81-84.

  4. Marx, F., Blasko, I., Pavelka, M., and Grubeck-Loebenstein, B. (1998). The possible role of the immune system in Alzheimer’s disease. Exp. Gerontol. 33, 871-881.

  5. Blasko, I., Marx, F., Steiner, E., Hartmann, T., and Grubeck-Loebenstein, B. (1999). TNF-a and IFN-g induce the production of Alzheimer b amyloid peptides and decrease the secretion of APPs. FASEB J. 13, 63-68.

  6. Marx, F., Blasko, I., Zisterer, K., and Grubeck-Loebenstein, B. (1999). Transfected human B cells: a new model to study the functional and immunostimulatory consequences of APP production. Exp. Gerontol. 34, 783-795.

  7. Marx, F., Blasko, I., and Grubeck-Loebenstein, B. (1999). Mechanisms of immune regulation in Alzheimer´s desease: a viewpoint. Arch. Immunol. Ther. Exp. (Warsz.) 47, 205-209.

  8. Blasko, I., Marx, F., Marksteiner, J., and Grubeck-Loebenstein, B. (1999). Abnormalities of amyloid b precursor protein expression in platelets of patients with Alzheimer disease: do we understand them well enough? Arch. Neurol. 56, 889-890.

  9. Grubeck-Loebenstein, B., Blasko, I., Marx, F., and Trieb, K. (2000). Immunization with b-amyloid: could T-cell activation have a harmful effect? Trends Neurosci. 23, 114.

  10. Marx, F., Gritsun, T.S., Grubeck-Loebenstein, B., and Gould, E.A. (2001). Diagnostic immunoassays for tick-borne encephalitis virus based on recombinant baculovirus protein expression. J. Virol. Methods 91, 75-84.

  11. Saurwein-Teissl, M., Lung, TL., Marx, F., Gschosser, C., Asch, E., Blasko,I., Parson, W., Bock, G., Schonitzer, D., Trannoy, E. and Grubeck-Loebenstein, B. (2002). Lack of antibody production following immunization in old age: association with CD8(+)CD28(-) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J. Immunol. 168, 5893-9.

  12. Kaiserer, L., Oberparleiter, C., Weiler-Görz, R. and Marx, F.(2003). Characterization of the Penicillium chrysogenum antifungal protein PAF. Arch. Microbiol. 180, 204-210.

  13. Oberparleiter, C., Kaiserer, L., Haas, H., Ladurner, P., Andratsch, M. and Marx, F.(2003). Active internalization of the Penicillium chrysogenum antifungal protein PAF in sensitive Aspergilli. Antimicrob. Agents Chemother. 47, 3598-3601.

  14. Gomez, I., Marx, F., Saurwein-Teissl, M., Gould, E.A. and Grubeck-Loebenstein, B. (2003). Characterization of tick-borne encephalitis virus-specific human T lymphocyte responses by stimulation with structural TBEV proteins expressed in a recombinant baculovirus. Viral Immunol. 16, 407-414.

  15. Marx, F. (2004). Small, basic antifungal proteins secreted from filamentous ascomycetes: a comparative study regarding expression, structure, function and potential application. Appl. Microbiol. Biotechnol, 65, 133-142.

  16. Gomez, I., Marx, F., Gould, E.A. and Grubeck-Loebenstein, B. (2004). T cells from elderly persons respond to neoantigenic stimulation with an unimpaired IL-2 production and an enhanced differentiation into effector cells. Exp. Gerontol. 39, 597-605.

  17. Leiter, E., Marx, F., Pusztahelyi, T., Haas, H. and Pocsi, I. (2004). Penicillium chrysogenum glucose oxidase - a study on its antifungal effects. J. Appl. Microbiol. 97, 1201-1209.

  18. Marx, F., Salvenmoser, W., Kaiserer, L., Graessle, S., Weiler-Gorz, R., Zadra, I. and Oberparleiter, C. (2005). Proper folding of the antifungal protein PAF is required for optimal activity. Res. Microbiol. 156, 35-46.

  19. Theis, T., Marx, F., Salvenmoser, W., Stahl, U., and Meyer, V. (2005). New insights into the target site and mode of action of the antifungal protein (AFP) of Aspergillus giganteus. Res. Microbiol. 156, 47-56.

  20. Szappanos, H., Szigeti, G.P., Pal, B., Rusznak, Z., Szucs, G., Rajnavölgyi, E., Balla, J., Balla, G., Nagy, E., Leiter, E., Pocsi, I., Marx, F., and Csernoch, L. (2005). The Penicillium chrysogenum-derived antifungal peptide shows no toxic effects on mammalian cells in the intended therapeutic concentration. Naunyn-Schiedberg's Arch. Pharmacol. 371, 122-132.

  21. Galgoszy, L., Papp, T., Leiter, E., Marx, F., Pocsi, I., Vagvölgyi, C. (2005). Sensitivity of different Zygomycetes to the Penicillium chrysogenum antifungal protein (PAF). J. Basic Microbiol. 45, 136-141.

  22. Leiter, E., Szappanos, H., Oberparleiter, C., Kaiserer, L., Csernoch, L., Pusztahelyi, T., Emri, T., Pocsi, I., Salvenmoser, W., and Marx, F. (2005). The antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob. Agents Chemother. 49, 2445-2453.

  23. Tribus, M., Galehr, J., Trojer, P., Brosch, G., Loidl, P., Marx, F., Haas, H., & Graessle, S. (2005). HdaA, a Major Class 2 Histone Deacetylase of Aspergillus nidulans Affects Growth Under Conditions of Oxidative Stress. Eukaryot. Cell 4, 1736-1745.

  24. Ladurner, P., Pfister, D., Seifarth, C., Schaerer, L., Mahlknecht, M., Salvenmoser, W., Gerth, R., Marx, F., and Rieger, R. (2005). Production and characterisation of cell- and tissue-specific monoclonal antibodies for flatworm Macrostomum sp. Histochem. Cell Biol. 123: 89-104.

  25. Hagen, S., Marx, F., Ram, A.R., and Meyer, V. (2007). The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi. Appl. Environm. Microbiol. 73, 2128-2134.

  26. Marx, F., Binder, U., Leiter, E., and Pocsi, I. (2008) The Penicillium chrysogenum antifungal protein PAF, a promising tool for fungal cell biology studies and the development of new antifungal therapies. Cell. Mol. Life Sci. 65, 445-454.

  27. Pfister, D., De Mulder, K., Hartenstein, V., Kuales, G., Borgonie, G., Marx, F., Morris, J., and Ladurner, P. (2008) Flatworm stem cells and the germ line: Developmental and evolutionary implications of macvasa expression in Macrostomum lignano. Dev. Biology 319, 146-159.

  28. Batta, G., Barna, T., Gaspari, Z., Sandor, S., Köver, K., Binder, U., Sarg, B., Kaiserer, L., Chhillar, A., Eigentler, A., Leiter, E., Hegedüs, N., Pocsi, I., Lindner, H., and Marx, F. (2009) Functional aspects of the solution structure and dynamics of PAF - a highly stable antifungal protein from Penicillium chrysogenum. FEBS J. 276(10):2875-2890.

  29. Binder, U., Oberparleiter, C., Meyer, V., and Marx, F. (2010) The antifungal protein PAF interferes with PKC/MPK and cAMP/PKA signalling of Aspergillus nidulans, Mol Microbiol. 75:294-307

  30. Binder, U., Chu, M., Read, N.D., and Marx, F. The antifungal activity of the Penicillium chrysogenum protein PAF disrupts calcium homeostasis in Neurospora crassa. (2010). Eukaryot. Cell. 9: 1374-1382.

  31. Hegedüs, N., Sigl, C., Zadra, I., P—csi, I., and Marx, F. The paf gene product modulates asexual development in Penicillium chrysogenum. (2011). J. Basic Microbiol. 51: 253-262.

  32. Hegedus, N.; Leiter, E.; Kovacs, B.; Tomori, V.; Kwon, NJ.; Emri, T.; Marx, F.; Batta, G.; Csernoch, L.; Haas, H.; Yu, JH.; Pocsi, I. (2011) The small molecular mass antifungal protein of Penicillium chrysogenum - a mechanism of action oriented review. J. Basic Microbiol. 51(6); 561-571.

  33. Binder U., Bencina M., Eigentler A. Meyer V., Marx F. (2011). The Aspergillus giganteus antifungal protein AFPNN5353 activates the cell wall integrity pathway and perturbs calcium homeostasis. BMC Microbiol. 11:209. doi: 10.1186/1471-2180-11-209.

  34. Eigentler A., Pócsi I., Marx F. (2012). The anisin1 gene encodes a defensin-like protein and supports the fitness of Aspergillus nidulans. Arch. Microbiol.194:427-37. doi: 10.1007/s00203-011-0773-y.

  35. Hegedüs, N., and Marx, F. (2013). Antifungal proteins: More than antimicrobials? Fungal Biol. Rev. 26: 132-145.

  36. Fizil, Á., Gáspári, Z., Barna, T., Marx, F., and Batta, G. (2015). "Invisible" conformers of an antifungal disulfide protein revealed by constrained cold an heat unfolding, CEST-NMR experiments, and molecular dynamics calculations. Chemistry 21: 5136-5144.

  37. Binder, U., Bencina, M., Fizil, Á., Batta, G., Chhillar, A.K., and Marx, F. (2015). Protein kinase A signaling and calcium ions are major players in PAF mediated toxicity against Aspergillus niger. FEBS Lett. 589: 1266-1271.

  38. Virágh, M., Marton, A., Vizler, C., Tóth, L., Vágvölgyi, C., Marx, F., and Galgóczy L. (2015). Insight into the antifungal mechanism of Neosartorya fischeri antifungal protein. Protein Cell. 6: 518-528.

  39. Sonderegger, C., Galgóczy, L., Garrigues, S., Fizil, Á., Borics, A., Manzanares, P., Hegedüs, N., Huber, A., Marcos, JF. Batta, G., and Marx, F. (2016) A Penicillium chrysogenum-based expression system for the prodcution of small, cysteine-rich antifungal proteins for structural and functional analyses. Microb Cell Fact. 15:192.

  40. Sonderegger C., Fizil Á., Burtscher L., Hajdu D., Muñoz A., Gáspári Z., Read ND., Batta G., Marx F. (2017). D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function. PLoS ONE 12(1):e0169920.

  41. Garrigues S., Gandia M., Borics A., Marx F., Manzanares P., Marcos J.F. (2017). Mapping and identification of antifungal peptides in the putative antifungal protein AfpB from the filamentous fungus Penicillium digitatum. Frontiers Microbiol. 8: 592

  42. Gágóczy L., Borics A., Virágh M., Ficze H., Váradi G., Kele Z., Marx F. (2017). Structural determinants of Neosartorya fischeri antifungal protein (NFAP) for folding, stability and antifungal activity. Sci. Reports 7:1963.

  43. Garrigues S., Gandía M., Popa C., Borics A., Marx F., Coca M., Marcos J., Manzanares P. (2017). Efficient production and characterization of the novel and highly active antifungal protein AfpB from Penicillium digitatum. Sci. Reports 7: 14663.

  44. Huber A, Hajdu D., Bratschun-Khan D., Gáspári Z., Varbanov M., Philippot S., Fizil Á., Czajlik A., Kele Z., Sonderegger C., Galgóczy L., Bodor A., Marx F., Batta G. (2018). New antimicrobial potential and structural properties of PAFB: a cationic, cysteine-rich protein from Penicillium chrysogenum Q176. Sci. Reports 8: 1751.

  45. Tóth L., Váradi G., , Borics A., Batta G., Kele Z., Vendrinszky Á., Tóth R., Ficze H., Tóth G.K., Vágvölgyi C., Marx F., Galgóczy, L. (2018). Anti-candidal activity and functional mapping of recombinant and synthetic Neosartorya fischeri antifungal protein 2 (NFAP2). Front. Microbiol. 9: 393.

  46. Sonderegger C., Váradi G., Galgóczy L., Kocsubé S., Posch W., Borics A., Dubrac S., Tóth G.K., Wilflingseder D., Marx F. (2018). The evolutionary conserved  g-core motif influences the anti-Candida activity of the Penicillium chrysogenum antifungal protein PAF. Front. Microbiol. 9: 1655.

  47. Garrigues S., Gandía M., Castillo L., Coca M., Marx F., Marcos J.F., Manzanares P. (2018). Three antifungal proteins  from Penicillium expansum: Different patterns of production and antifungal activity. Front. Microbiol 9: 2370.

  48. Fizil Á., Sonderegger C., Czajlik A., Fekete A., Komáromi I., Hajdu D., Marx F., Batta G. (2018). Calcium binding of the antifungal protein PAF: Structure, dynamics and function aspects by NMR and MD simulations. PLoS One 13: e0204825.

  49. Kovács R, Holzknecht J, Hargitai Z, Papp C, Farkas A, Borics A, Tóth L, Váradi G, Tóth GK, Kovács I, Dubrac S, Majoros L, Marx F, Galgóczy L. (2019). In vivo applicability of Neosartorya fischeri antifungal protein 2 (nfap2) in treatment of vulvovaginal candidiasis. Antimicrob. Agents Chemother.63(2): e01777-18..

  50. Hajdu D., Huber A., Czajlik A., Tóth L., Kele Z., Kocsubé S., Fizil Á., Marx F., Galgóczy L., Batta G. (2019). Solution structure and novel insights into phylogeny and mode of action of the Neosartorya (Aspergillus) fischeri antifungal protein (NFAP). Int. J. Biol. Macromol. 129:511-522

  51. Galgóczy L, Marx F. (2019). Do antimicrobial proteins contribute to overcoming the hidden antifungal crisis at the dawn of a post-antibiotic era? Microorganisms7 (1).

  52.  Huber A, Oemer G, Malanovic N, Lohner K, Kovács L, Salvenmoser W, Zschocke J, Keller MA, Marx F. (2019) Membrane Sphingolipids Regulate the Fitness and Antifungal Protein Susceptibility of Neurospora crassa. Front. Microbiol. 10: 605

  53. Galgóczy L, Yap A, Marx F. (2019) Cysteine-Rich Antifungal Proteins from Filamentous Fungi are Promising Bioactive Natural Compounds in Anti-Candida Therapy. Isr. J. Chem. 59(5):360-370. Review

  54. Huber A, Lerchster H, Marx F.  (2019) Nutrient Excess Triggers the Expression of the penicillium chrysogenum Antifungal Protein PAFB. Microorganisms 7 (12): 654

  55. Tóth L, Boros É, Poór P, Ördög A, Kele Z, Váradi G, Holzknecht J, Bratschun-Khan D, Nagy I, Tóth GK, Rákhely G, Marx F, Galgóczy L. (2020). The potential use of the Penicillium chrysogenum antifungal protein PAF, the designed variant PAFopt and its γ-core peptide Pγopt in plant protection. Microb. Biotechnol. 13(5):1403-1414 Epub ahead of pring.

  56. Tóth L, Váradi G, Boros É, Borics A, Ficze H, Nagy I, Tóth GK, Rákhely G, Marx F, Galgóczy L. (2020) Biofungicidal Potential of Neosartorya (Aspergillus) Fischeri Antifungal Protein NFAP and Novel Synthetic gamma-Core Peptides. Front Microbiol. 11:820

  57. Huber A, Galgóczy L, Váradi G, Holzknecht J, Kakar A, Malanovic N, Leber R, Koch J, Keller MA, Batta G, Tóth GK, Marx F. (2020) Two small, cysteine-rich and cationic antifungal proteins from Penicillium chrysogenum: A comparative study of PAF and PAFB. Biochim Biophys Acta Biomembr. 1862(8):183246.

  58. Holzknecht J, Kühbacher A, Papp C, Farkas A, Váradi G, Marcos JF, Manzanares P, Tóth GK, Galgóczy L, Marx F. (2020) The Penicillium chrysogenum Q176 Antimicrobial Protein PAFC Effectively Inhibits the Growth of the Opportunistic Human Pathogen Candida albicans. J Fungi (Basel). 6(3):141.

  59. Czajlik A, Holzknecht J, Galgóczy L, Tóth L, Poór P, Ördög A, Váradi G, Kühbacher A, Borics A, Tóth GK, Marx F, Batta G. (2021) Solution Structure, Dynamics, and New Antifungal Aspects of the Cysteine-Rich Miniprotein PAFC. Int J Mol Sci.

  60. Guanini F, Huber A, Alex JM, Marx F, Crowley PB. (2021) Porous Assembly of an Antifungal Protein Mediated by Zinc and Sulfonato-calix[8]arene. J Struct Biol.

  61. Gandía, M., Kakar, A., Giner-Llorca, M., Holzknecht, J., Martínez-Culebras, P., Galgóczy, L., Marx, F., Marcos, J.F., and Manzanares, P. (2021) Potential of antifungal proteins (AFPs) to control Penicillium postharvest fruit decay. J. Fungi, 7, 449.

  62. Kakar, A., Holzknecht, J., Dubrac, S., Gelmi, M.L., Romanelli, A., and Marx, F. (2021) New perspectives in the antimicrobial activity of the amphibian Temporin B: Peptide analogs are effective inhibitors of Candida albicans growth. J. Fungi, 7, 457. jof7060457

  63. Tóth L., Poór P., Ördög A., Váradi G., Farkas A., Papp C., Bende G., Tóth G.K., Rákhely G., Marx F., and Galgóczy L.. (2022). The combination of Neosartorya (Aspergillusfischeri antifungal proteins with rationally designed γ-core peptide derivatives is effective for plant and crop protection. Biocontrol (Dordr). 67(2):249-262. doi: 10.1007/s10526-022-10132-y.

  64. Holzknecht J., Dubrac S., Hedtrich S., Galgóczy L., and Marx F. (2022). Small, Cationic Antifungal Proteins from Filamentous Fungi Inhibit Candida albicans Growth in 3D Skin Infection Models. Microbiol Spectr 10(3). e0029922. doi: 10.1128/spectrum.00299-22.

  65. Kakar A., Sastré-Velásquez L.E., Hess M., Galgóczy L., Papp C., Holzknecht J., Romanelli A., Váradi G., Malanovic N., Marx F. (2022). The Membrane Activity of the Amphibian Temporin B Peptide Analog TB_KKG6K Sheds Light on the Mechanism That Kills Candida albicans. mSphere. 7(5):e0029022. doi: 10.1128/msphere.00290-22.

  66. To D., Kakar A., Kali G., Wibel R., Knoll P., Marx F., Bernkop-Schnürch A. (2023). Iminated aminoglycosides in self-emulsifying drug delivery systems: Dual approach to break down the microbial defense. J Colloid Interface Sci. 630(Pt B):164-178. doi: 10.1016/j.jcis.2022.10.077.

  67. Váradi G., Batta G., Galgóczy L., Hajdu D., Fizil À., Czajlik A., Virágh M., Kele Z., Meyer V., Jung, S., Marx F., Tóth G. (2023). Confirmation of the disulfide connectivity and strategies of chemical synthesis of the four-disulfide-bond-stabilized Aspergillus giganteus antifungal protein, AFP. J Nat Sci. 86:782-790. doi: 10.1021/acs.jnatprod.2c00954.

  68. Akkus-Dagdeviren Z.B., Saleh A., Schöpf C., Truszkowska M., Bratschun-Khan D., Fürst A., Seybold A., Offterdinger M., Marx F., Bernkop-Schnürch A. (2023). Phosphatase-degradable nanoparticles: A game-changing approach for the delivery of antifungal proteins. J Coll Interface Sci 646:290-300. doi: 10.1016/j.jcis.2023.05.051.

Institut für Molekularbiologie