Force Transmission In Offset Broach Handles Used For Hip Replacement:

Comparison Of Three Different Designs

D. Putzer1, E. Mayr1, C.Haid1, W. Hozack2, M. Nogler1

1Experimental Orthopaedics, Medical University of Innsbruck
2University of Philadelphia
Some of the authors are consultants from Stryker

The company provided no financial support for the present study
Introduction

- Double offset broach handles are used:
 - in minimal invasive direct anterior total hip arthroplasty
 - to facilitate the preparation of the femoral canal
Introduction

Aim of the study:

Quantify the differences in force and impulse transmission between two versions of double offset broach handles and a single offset broach handle.
Two types of double offset broach handles were compared to a single offset broach handle (all Stryker, Mahwah, NJ-USA)
Materials & Methods

- 30 measurements for five different falling heights for each broach handle
- Measurement of the force variations by a load cell
- Obtainment of the maximum force peak
- Calculation of the impaction impulse
- Non-parametric U-Test
Materials & Methods

- Calculation of the impaction impulse

Theoretical model:
- Mass concentrated in one point
- No friction
- No Loss of energy

\[
\vec{I} = \int_{t_1}^{t_2} f \, dt
\]

\[
\vec{I} = m\vec{\nu}
\]
Results

Maximum force peak $f(t)$ [kN]

Arch of angle [$^\circ$]

- 15
- 30
- 45
- 60
- 85

A
B
S
Results

Arche of angle [°]

Impulse [Ns]

15 30 45 60 85

A B S T
Results

- Broach handle S has a 18% higher force peak than B and 36% higher than A
- S has a 24% higher impulse value than B and a 19% higher impulse value than A
- A had higher impulse values (5%) and lower maximum force values (18%) compared to B
Conclusion

- The single broach handle has the highest force peaks in the direction of the tip, followed by broach handle B (22% lower than S) and A (36% lower than S).

- Higher instantaneous force peaks could increase the risk of bone fracture.

- Contact surface during the impact could be a determining factor in reducing the maximum force peak.

- Elastic properties of the broaches were not known.
Conclusion

- Impulse values are very similar between the two double offset broach handles (A has 6% higher impulse value than B) and different compared to the single offset broach handle (S had 31% higher impulse value than B and a 19% higher impulse value than A).

- The introduction of the lateral lever arm has a measurable effect in double offset broach handles.

- Less kinetic energy is transmitted in the direction of the tip.
Thank you!