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Summary Question of the study Sleep stages are known to differ in the heart rate variability (HRV).

REM sleep and wakefulness are characterized by long-range correlations in the heart beat

rate. In SWS, a statistical correlation extends only to very few (3–6) of the heart beats that

follow. In the present paper, this difference is utilized to separate NREM sleep from REM

sleep and wakefulness on-line in polysomnographic whole-night sleep recordings.

Methods So far, 48 whole-night recordings of 19 healthy subjects have been subjected to

numerical analysis. Extracting the RR intervals from the ECG channels of the polysomn-

ographies, a time series was established and analysed with a variety of numerical methods. In

particular, we have applied the progressive detrended fluctuation analysis (PDFA), a tool that

we recently developed to find and localize statistical ‘change points’, and a continuously

moving wavelet analysis that we adapted for this purpose. Spectral methods were applied to

gain indirect information on the sympathetic activity.

Results PDFA and the wavelet method were found to be sensitive to transitions between

particular sleep stages and consistently insensitive to others when superimposed on a sleep

chart of visually scored colour-coded sleep stages: Short embedded periods of wakefulness

are detected with excellent sensitivity and reliability. ‘Numerical events’ reliably mark

transitions from deeper to lighter sleep (e.g. from stage 4 to stage 3 or 2) but are consistently

missing for transitions from deep to light sleep (e.g. from stage 3 or 2 to stage 4). By varying

a built-in scaling parameter of the method, a visual display is generated that clearly

differentiates REM sleep and wakefulness from NREM sleep. Wakefulness and REM cannot

be distinguished in this way. The examples discussed are typical of the 48 whole-night

polysomnographies.

Conclusions The fact that our numerical method is not sensitive to the more gradual settling

from the initiation of sleep into SWS rules out the possibility of progressive on-line sleep

staging based on the PDFA approach. The discrimination between REM sleep/wake and

NREM sleep gives rise to an automated aid to visual scoring. Since PDFA events seem to be

related to the occurrence of autonomic arousals, our approach has the potential to provide an

alternative way to detect and classify arousals.

Keywords heart rate variability – time series analysis – sleep stage reconstruction –

autonomic arousal.

Zusammenfassung Fragestellung Schlafstadien unterscheiden sich in der Herzschlagvariabilität. Statistische

Analysen des Herzschlags ergeben kurz- und lang-reichweitige sehr unterschiedliche

Korrelationszeiten in der Zeitreihe der RR-Intervalle. REM-Schlaf und Wachstadien sind

charakterisiert durch statistische Korrelation über viele RR-Intervalle. Im SWS erstreckt sich
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eine statistische Korrelation nur über 3–6 RR-Intervalle. In der vorliegenden Arbeit wird der

Versuch einer automatisierten und fortlaufenden Unterscheidung von NREM-Schlafstadien

und REM-Schlaf bzw. Stadium Wach auf der Basis von numerischen RR-Intervall-Analysen

dargestellt.

Methodik Zeitreihen von RR-Intervallen wurden aus dem EKG von bisher insgesamt 48

Polysomnographien von 19 gesunden, männlichen Probanden ermittelt und mit verschie-

denen numerischen Methoden analysiert. Mittels der von uns entwickelten PDFA

(Progressive Detrended Fluctuation Analysis) und einer Wavelet-Analyse wurden statistische

Wechsel berechnet und zeitlich lokalisiert. Indirekte Hinweise auf den Sympathotonus

lieferte die gefensterte Fourier-Transformation von 1 Minutenabschnitten der RR-Zeitreihe.

Ergebnisse Vor dem Hintergrund einer visuell ermittelten, farblich kodierten Schlafstadi-

entapete ergeben PDFA und Wavelet-Methode dieselben Hinweise auf Übergänge von

Schlafstadien: die Ergebnisse beider numerischen Analysen sind wenig sensitiv für die

Progression vom Einschlafen bis zu Tiefschlaf. Wechsel von Tiefschlaf- in Leichtschlafsta-

dien bzw. Wach werden dagegen mit hoher Verlässlichkeit und guter zeitlicher Überein-

stimmung mit der Schlafstadienklassifizierung nach R&K erkannt. Die Darstellung der

Steigungen der PDFA-Verläufe lässt eine klare Trennung von REM-Schlaf (beziehungsweise

Wach) und NREM-Schlafstadien erkennen. REM und Wach lassen sich daraus nicht direkt

unterscheiden. Die diskutierten typischen Beispiele wurden exemplarisch ausgesucht aus

bisher insgesamt 48 untersuchten Polysomnographien, die von 19 Probanden stammen.

Schlussfolgerungen Die Tatsache, dass Schlafstadienübergänge nur in Richtung leichteren

Schlafs erkannt werden, spricht gegen eine Anwendung der Methode zur automatisierten und

fortlaufenden Bestimmung der Schlafstadien während der nächtlichen Schlafaufzeichnung

im Labor. Die Methode der Trennung von REM und Wach von NREM-Stadien ist hingegen

viel versprechend in der Assistenz des visuellen Scorings. PDFA-Ereignisse sind hinweisend

auf vegetative und EEG-Arousals und für die Erkennung von fragmentiertem Schlaf

verwertbar.

Schlüsselwörter Herzfrequenz Variabilität – Zeitreihen-Analyse – Schlafstadien Rekon-

struktion – vegetative Arousal.

Introduction

The present standard of sleep stage definition by Rechts-
chaffen and Kales (R & K) was established 35 years ago [22].
However, to date no method has replaced the standard
procedure of visual analysis by an expert polysomnographer,
although visual sleep stage scoring is a tedious and time-
consuming task that is also prone to subjectiveness, as e.g. a
non-negligible inter-rater variability.
Furthermore, it has been criticized that conceptual devi-

ations as regards the biology of sleep may be inherent in the
scoring definitions, resulting e.g. from the rigid one-epoch
resolution, from a focus exclusively on vertex EEG, from the
sparse number of modalities sampled from the sleeping body,
and from their deduction exclusively from healthy male
adults. Therefore, many attempts at a comprehensive defini-
tion of sleep are currently being made.
The progress in digital data acquisition and processing that

has been made over the past years opens up entirely new
possibilities to test hypotheses along these lines. Information
on system conditions such as the vegetative state, for
instance, can be gained from analysing the heart rate
variability (HRV) of the sleep ECG [3, 17]. Recently, Bunde
et al. [4, 5] have shown that sleep stages (light sleep, deep
sleep, REM sleep) significantly differ in the correlation time
of the heart beat rate. Standard sleep evaluation according to
the rules of R & K represents a visual decision-making
process on the basis of a global impression of 30-s epochs of
restricted polysomnographic information, therefore resulting
in poor time resolution for arousal detection.

In the following, we report on our main conclusions drawn
from an ECG fluctuation analysis and discuss the possibility
of applications for sleep stage reconstruction. We will show
that a numerical on-line time series analysis of ECG may
contribute specific information, valuable e.g. for arousal
detection, and thus complement EEG-based sleep evaluation.

Methods

Subjects and procedures

So far we have subjected 48 ECG data sets of whole-night
recordings from 19 healthy male subjects (aged 22–36 years)
to numerical analysis. The subjects participated in other
sleep-related clinical studies, which were approved by the
local ethics committee and which provided the raw data for
the present purely numerical work. Each subject signed an
informed consent and underwent a clinical interview and
evaluations (PSQI, ESS, sleep diary over a period of
2 weeks, evening and morning protocol) to confirm the
absence of any sleep-related or other disease. None of the
subjects complained about non-restorative sleep or daytime
somnolence. All were free of any prescribed medication and
in good physical condition. None presented evidence of
illegal drug consumption.
The first night of polysomnographic recording allowed

the subjects to become habituated to the recording proce-
dure. Owing to the first-night effect, numerical data from
these recordings were not included here. The recording
procedure remained the same throughout the entire study
and followed the guidelines of the German Sleep Research

34 Stefan Telser et al.

Somnologie 8: 33–41, 2004



Society (DGSM) [21]. At about 19.00 hours, the prepar-
ation of the subjects for the recording began. The recording
started at about 23.00 hours. Time in bed averaged about
8 hours.

Data acquisition

The following variables were systematically recorded on a
17-channel analogue Nihon Kohden polygraph and digitized
at a sampling rate of 500 Hz: five channels of electroen-
cephalogram (EEG; frontal Fz-A1, central C3-A2, C4-A1,
occipital O1-A1, O2-A2 localizations of the 10/20 electrode
placement system), electro-oculogram (EOG; left eye-A2,
right eye-A2), electromyogram (EMG; submental muscle,
left anterior tibial muscle), electrocardiogram (ECG; single
channel chest lead at V1-V4), thoracic and abdominal
breathing effort.
All sleep data were available on paper as well as in

digitized format. Sleep staging was carried out following the
standard criteria of R & K by two independent raters from our
sleep lab. In some of the illustrations, a sleep chart of colour-
coded sleep stages resembled the background against which
the numerical results were depicted.
RR intervals were extracted from the digitized ECG curve

by a computer program developed by the authors with the
option to monitor the results interactively; at any stage of
processing it was possible to check and correct manually the
outcome of the identification of the R waves. This allowed
the estimation and monitoring of the quality of the time series

data generated from the raw data, i.e. from the digitized ECG
curve of the recording.
Exact synchronization of all types of recordings is of

paramount importance for the analysis (no time leaps,
omissions, etc.). For the sake of having as little difference in
the data acquisition of all included recordings as possible, we
chose four more recent data sets scored by one particular scorer
from the total of 48 data sets to be included in the quantitative
assessment presented in the Results section (accumulated in
table 1). However, all analysed data sets (except one set with
very frequently occurring extrasystoles) have confirmed our
findings detailed below. The inter-rater variability between the
two sleep scorers was within acceptable limits of about 70%,
which lies within the range of published assessments of inter-
rater variability [9]. For particular sequences of interest (i.e. in
cases of obvious discrepancy between numerical prediction
and manual scoring), a third consensus scorer, acquainted with
the previous scoring and the results of the numerical analysis,
was asked for an interpretation. We decided on such a
procedure because ) at this state of evaluation of the PDFA
method) it was not clear what information was to be extracted
from the heart beat time series.

Numerical methods

Recently, new statistical methods have been developed to
investigate the heart rate variability in healthy subjects and
patients [1, 2, 8, 11, 12, 19]. Physiological time series are
typically affected by nonstationarities, which make the

Table 1. Juxtaposition of manually scored sleep stage transitions and numerical ‘PDFA events’ (indicated by significant peaks in the slope of the
PDFA curves) for four data sets. Transitions that are strongly correlated with PDFA events and transitions that are very rarely accompanied by
PDFA events are both accentuated by boldface.

Manual scoring PDFA event No PDFA event

Transitions to wake:

Data set 1 13 13 0

Data set 2 31 30 1

Data set 3 16 16 0

Data set 4 19 18 1

Transitions 4 to 3:

Data set 1 5 2 3

Data set 2 15 4 11

Data set 3 4 3 1

Data set 4 0 0 0

Transitions 3 to 4:

Data set 1 7 0 7

Data set 2 19 0 19

Data set 3 7 1 6

Data set 4 1 0 1

Transitions 3 to 2:

Data set 1 10 5 5

Data set 2 47 16 31

Data set 3 6 4 2

Data set 4 8 3 5

Transitions 2 to 3:

Data set 1 12 0 12

Data set 2 52 0 52

Data set 3 8 3 5

Data set 4 10 0 10
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detection of subtle changes in the correlation of the heart
beats challenging. In this context, especially the detrended
fluctuation analysis (DFA), which is able to detect the
presence of long-range power-law correlations in a data set,
has proven very successful. For a detailed list of references
on the DFA and its applications in various research fields
including meteorology, physiology, neurology, economics
and more, see [10] and [7]. Originally DFAwas developed by
Peng et al. [18] to distinguish non-coded from coded areas of
DNA sequences, since coded areas are lacking the long-range
correlations typically present in the often highly repetitious
non-coded areas. Similarly, DFA has also revealed that REM
sleep and periods of wakefulness display a long-time
memory that is absent in light sleep and deep sleep [4, 13].
The aim of the present work was to exploit these

differences in HRV in order to recognize transitions between
sleep stages while processing a night recording from evening
to morning. To this end, we developed a new time-series
analysis method, which we will refer to as progressive
detrended fluctuation analysis (PDFA). Mathematical defini-
tions can be found in the Appendix. More details on the new
method will be presented elsewhere; here we restrict
ourselves to describing it briefly and demonstrating its ability
to detect changes in the statistics occurring at a particular
time on artificially generated data (cf. fig. 1).
As in the DFA, local linear (or polynomial) trends are

subtracted from a cumulative (i.e. integrated) time series
derived from the time series of RR intervals. However, in
contrast to DFA, where one first divides the whole
cumulative time series into ‘time windows’ of increasing
window size in order to calculate the local trends and then
derives the slope of a fluctuation variance versus window size
in doubly logarithmic scale, PDFA uses only a particular
window size and progressively adds more and more data
points from the time series to fill more and more of these time
windows. This introduces an intrinsic time axis, which allows
the detection of statistical changes from a particular data
point on.

Applying this method to the distribution of the RR
intervals in the ECG data set allows the localization of sleep
stage transitions in time with high sensitivity and resolution
(cf. Results). Strictly speaking, the method is not sensitive
exclusively to changes in correlation time, but also to
changes in standard deviation of the numbers in the time
series; thus these two effects cannot be distinguished.
Nevertheless, it has proven an excellent tool to detect certain
sleep stage transitions, which are probably characterized by
both a change in correlation time and a change in statistical
spread of the heart beat intervals.
To validate our new method, we carried out a correspond-

ing calculation on another scale-dependent measure that
allows analysis across the data set. We have chosen the
wavelet transform standard deviation outlined in Teich et al.
[26]. In order to get extra information on sympathetic
activation, we additionally carried out a Fast Fourier
Transformation (FFT), which delivers information on the
vegetative state [3, 17].

Results

Sleep stage transitions

The following figures exemplify results of PDFA applied
to whole-night recordings. In all of these example images,
PDFA has been carried out several times for a window
size (¼ scaling parameter) varying from 3 up to about 80
data points. Strikingly, almost every transition from deep
sleep (e.g. stage 4) to lighter sleep (stage 3) is marked by
a PDFA event, i.e. a pronounced step in the PFDA curves
(for a mathematical definition of the quantity plotted in the
graphs, we refer to the Appendix). However, such steps are
missing for the progression from stage 3 to 4. This
asymmetry in time is a significant and general feature that
can be observed for various combinations of sleep stages.
Visual examples of this effect are given in figure 2. It is
not an artefact of the method because it remains if the data
set is processed reversely, i.e. from ‘morning to evening’.

Progressive number of data points (p)Progressive number of data points (p)
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Figure 1. The capability of the PDFA method to localize changes in the statistics in a time series is exemplified on an artificially generated time
series containing three data-point segments of long-range power-law correlated Gaussian random numbers having equal statistical spread but
different correlation between the data points: The parameter c (with 0 < c < 1) is a measure for the correlation length chosen in each segment. The
two deliberately built-in statistical change points are clearly visible as abrupt changes in the slope of the PDFA curve (on the left) or, alternatively,
in the numerically differentiated curve (on the right).
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Figure 2. PDFA curves (in arbitrary units) of various window sizes superimposed on a visually scored sleep chart for comparison. Two whole-
night recordings are shown, each with an enlarged detail on the right. The example at the bottom shows a night following sleep deprivation.

Transations from sleep to wake are marked by dotted lines
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Figure 3. Numerically differentiated PDFA curves (in arbitrary units) from recording excerpts from four different data sets. Note that most of the
higher peaks in the curves (corresponding to sharp changes in the slope of the PDFA curve) are related to transitions to wake, as can be seen by
means of vertical dotted lines indicating the manually scored transitions into wakefulness.
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In view of our experience with artificially generated
correlated and uncorrelated data, it seems that the transi-
tions to lighter sleep are characterized by short interme-
diate intervals of very strong fluctuations in the heart beat
rate. This has also been noticed by Bunde et al. [4].
Possibly it is related to the occurrence of short autonomic
arousals (cf. Discussion).
It turned out that by using the slope of the PDFA curve

derived from numerical differentiation, one gains a good
numerical indicator for a possible sleep stage transition. A
particularly striking example is visualized in figure 3: the
highest peaks in the slope of the PDFA curves are shown to
correlate very well with transitions to wakefulness in data set
samples from four different whole-night recordings. The
manually scored transitions to wakefulness are indicated as
dotted vertical lines. Here we have chosen four ‘typical’
examples, which allow us to discuss possible pitfalls: the
strong peak (indicated by an arrow) in figure 3a was caused
by an elevation in muscle tonus preceding a transition from 4
to 3; in figure 3b the marked structure was identified as a
momentary problem with the digital recording; and in
figure 3c we can see that movement artefacts can also give
rise to false-positive indications of wakefulness. These
problematic points, however, usually make up just a small
percentage, except for some more challenging irregular data

sets with e.g. extended motion times. Motoric events seem to
influence the analysis in any case.
From our data set pool, we chose four data sets from four

different subjects, all among our most recent ‘normal’ night
sleep recordings (i.e. no first nights, no nights following sleep
deprivation), for an especially detailed investigation of all
occurring types of transitions determined by manual scoring.
As numerical indicators we used what we call ‘PDFA
events’, i.e. peaks in the slope of the PDFA curves that lie
above a chosen threshold. Unfortunately, no universal
threshold can be chosen for all data sets, but choosing the
threshold just above the typical peak height for the smallest
window size has worked well for most samples.
Some of our results on contrasting numerical PDFA events

with sleep stage transitions for the chosen data sets are
summarized in table 1. Any uncertainty about PDFA events
(e.g. due to the peak being too close to the fringe of the
sample or due to crowding of several narrow peaks together,
etc.; cf. fig. 3) was counted as ‘no PDFA event’. Table 1
illustrates that non-gradual ‘ascending’ transitions (into
wake, from 4 to 3, or 3 to 2) are predominantly accompanied
by a PDFA event, as already illustrated in figure 3 for the
case of wake. The important thing here to note is the fact that
we almost never find a PDFA event for the corresponding
‘descending’ transitions (settling into deeper sleep, e.g. 2 to 3
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Figure 4. NREM sleep is characterized by a strong dependence on the size of the scaling parameter chosen for the numerical analysis, i.e. the
blue and red curves are well separated. On the contrary, in REM sleep (green) there is no such ‘scaling parameter dispersion’. Top: PDFA (with
the window size as scaling parameter), bottom: wavelet transform standard deviation (with the size of the wavelet basis as scaling parameter). The
graphs also demonstrate that the peaks indicating changes in the heart rate statistics coincide for both, completely independent, numerical methods
throughout the data set.
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or 3 to 4). A possible explanation for this striking imbalance
will be proposed under Discussion.

Differentiating REM sleep from NREM sleep

In numerically differentiating the PDFA curves, one finds an
interesting behaviour that may be used to distinguish REM
sleep (and wake) from NREM sleep: while periods of REM
sleep show no ‘dispersion’ in the scaling parameter (i.e. the
window size), the curves corresponding to small window
sizes (in red) clearly separate from the curves corresponding
to wide window sizes (in blue). The same behaviour is seen
in the wavelet analysis if the scaling parameter (which now
corresponds to the width of the chosen wavelet basis) is
scanned in a similar range as the window size. Furthermore,
figure 4 convincingly demonstrates that the PDFA measure
and the wavelet-transform standard-deviation measure are
sensitive to the same features in the heart rate statistics, as
indicated by coinciding peaks.
This dependence on the scaling size parameter, which is

present in NREM sleep and absent in REM sleep, can be
explained by the fact that by scanning from the smallest to the
largest window size, one crosses the correlation time typical
for NREM sleep (which is around 6 heart beats for light sleep
[4]) but not for REM sleep with its long time correlation.

Discussion

Having analysed a multitude of data sets, we can conclude
that automatic sleep staging based on changes in HRV alone
does not seem possible, at least not in the outlined approach,
since not all transitions from one sleep stage to another give
rise to a PDFA (or wavelet) event: Generally only non-
gradual transitions from deeper to lighter sleep or wakeful-
ness can be seen. Moreover, in general it is impossible to
determine which sleep stage transition has taken place based

on this type of numerical information alone, except for
transitions to wake, which are associated with the largest
change in the slope of the numerical curves.
But it seems that this fact in itself indicates the possibility

of gaining information on the state of the autonomic nervous
system during sleep: Variations in sleep EEG activity are
related to changes in cardiac variables and thus are
extractable to a certain degree from the ECG. Possibly the
imbalance concerning the occurrence of PDFA events along
the sleep cycle (‘waking up vs. falling asleep’) is related to
the prevalence of autonomic arousals. Interspersed auto-
nomic arousals, i.e. autonomic activation of short duration
terminating in a subcortical level, are not recognized by the
brain-centred sleep stage scores of R & K and ASDA criteria
[24]. However, autonomic arousals appear to be indicated as
‘PDFA events’ by our ECG fluctuation analysis method; thus
PDFA could be used to detect autonomic arousals.
In view of our hypothesis that absolute or relative

sympathetic activation relates to a PDFA event, we have
carried out another independent numerical evaluation to gain
additional information on the autonomic state. We have
calculated FFT power spectra of windows containing 64 RR
intervals to derive what’s called the low frequency (LF) band
(0–0.15 Hz) and the high frequency (HF) band (0.15–
0.5 Hz). This was motivated by the ongoing controversial
discussion on sympathetic activity and HRV. It has been
argued [3], for instance, that the HF band can be associated
with parasympathetic activity, while the LF band corresponds
to mixed sympathetic and parasympathetic activity. It was
suggested to introduce a sympathetic index as the ratio of LF
band/HF band to assess the sympathetic activity.
In figure 5, our results are seen to support this suggestion:

the sympathetic index is consistent with sympathetic nervous
system activation during REM sleep and wake. NREM sleep
on the other hand is characterized by relatively low
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sympathetic activity and a corresponding decrease in the LF
and increase in the HF band. Possibly the initial increase in
sympathetic activation is responsible for PDFA events
detecting even very short periods of wakefulness so
efficiently. It has to be mentioned, however, that the
correspondence between the level of the spectral sympathetic
indices and the sleep stages is not always as convincing as in
the example shown in figure 5. It seems that this correspon-
dence is more pronounced in some subjects than in others,
which will also have to be looked into more thoroughly. To
date, these issues remain a hypothesis that has to be tested
further. Recently developed new methods for the non-
invasive assessment of sympathetic activity such as the
pulse transit time (PPT) and the peripheral arterial tonometry
(PAT) [20] would be very appropriate means to investigate
this issue.

Conclusions

Answering the question raised in the title, one can summarize
as follows. Firstly, non-gradual ‘ascending’ transitions from
deep sleep to lighter sleep stages and transitions into
wakefulness correlate very well with our numerical indicators
and can be located as pronounced steps in the PDFA curves
(cf. examples in fig. 2). Secondly, differentiation between
REM sleep (and wake) and NREM sleep is possible:
Scanning the window size across the correlation time of
NREM leads to a ‘dispersion’ of short and large window
sizes in the numerically differentiated curves, which is seen
only in NREM sleep. Scanning the scaling parameter of a
wavelet analysis ‘mirrors’ this behaviour exactly, in spite of
the fact that this is a completely independent mathematical
method. This represents evidence that there is some
underlying physiological pattern both methods are sensitive
to: autonomic changes such as spells of sympathetic rise
parallel PDFA events at transitions from deeper to lighter
sleep. With spectral analyses of the heart rate, we established
that the onset of periods with increased occurrence of
autonomic arousals, as indicated by sympathetic tonus
elevation and unaffected EEG, are indicated by PDFA.
Our on-line analysis of sleep ECG might provide an

easy-to-administer method – complementing other non-
invasive methods such as PTT and PAT [20] – to shed light
on sleep distortion caused by an altered arousal threshold
[24]. Patients’ frequent complaint of non-restorative sleep
and daytime fatigue gives speech to a lack of sleep
continuity [23]. Sleep fragmentation seems to be the
underlying distortion [6, 15, 16]. Sleep fragmentation may
be assessed by autonomic arousal detection [16]; moreover,
EEG arousal seems to be associated with autonomic arousal
together as a functional pair [14, 25]. Therefore, we plan to
extend our research to sleep data of artificially altered
arousal thresholds and sleep pressure and to ECG record-
ings of polysomnographies from patients with sleep-related
diseases (e.g. depressive disorders, anxiety and panic
disorder) that are known to have a low arousal threshold,
poor subjective sleep quality and daytime sleepiness on top
of relatively normal sleep scores according to R & K. A
systematic evaluation of sensitivity and specificity of PDFA
and other numerical methods (e.g. wavelet analysis meth-
ods) to EEG arousal and autonomic arousal on a larger and
more variate pool of data sets is going to be performed. We
also plan to implement additional assessment techniques for
the autonomous nervous system during sleep in order to
validate the ECG-based assessment as a reliable tool for
tracing autonomic changes.
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Appendix: Mathematical definitions

Let us assume that we wish to analyse the time series {sk} of
total length N, in our case the data set containing the lengths
of all N RR intervals as numbers in chronological order. First
the time series, from which the mean value sh i ¼ 1

N

PN
k¼1 sk

has been subtracted, is integrated according to yðlÞ ¼
Pl

k¼1
sk � sh ið Þ. In a ‘random walk’ with steps {sk}, for example,
y(l) would correspond to the difference between the position
actually reached after l steps and the position reached after
taking the average step hsi l times. Next, this integrated (or
cumulative) time series is divided into non-overlapping

segments of equal length n, the ‘window size’. Similar to the
detrended fluctuation analysis (DFA) [10], in order to
eliminate local trends to qth order, in each segment a
polynomial of order q is fitted to the cumulative series and
the deviations from the polynomial are calculated. In this
work we restrict ourselves to the elimination of linear trends,
i.e. q ¼ 1, thus in each segment a least-squares straight line
is fitted to the cumulative data, representing the ‘local linear
trend’ ytrend(l) in that segment.
However, in contrast to DFA, not the total time series is

divided into segments of length n and analysed in one step,
but partial sums covering an increasing part of the total time
series are created and analysed separately. Each partial sum is
divided into non-overlapping segments of length n starting
from the beginning, and the local trends are eliminated in
each segment. Note that in contrast to DFA, where the
window size n is varied, here the segments are all of constant
length n (except for the last one containing the remain-
ing points). For partial sums of length p increasing
through the data set (p ¼ 1,…,N), the ‘PDFA curves’
shown in figure 2 (in arbitrary units) are defined as

P½n�ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
l¼1

yðlÞ � ytrendðl; nÞ½ �2
s

. Apart from the length

p of the evaluated time interval, P[n](p) depends on the
chosen window size n (as a reminder of this implicit
dependence, we tag the fluctuation variance with the sub-
script [n]). Note that, by definition, the function P[n](p) is
not a scaling independent measure [26]. The procedure can
be repeated for a different scaling parameter, i.e. a different
window size n. In fact, in figures 2–4 many curves
belonging to window size parameters in a wide range
(from about 4 to 80 data points or heart beats) are shown
simultaneously.
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