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Abstract

We present a novel scaling-dependent measure for times series analysis, the progressive

detrended fluctuation analysis (PDFA). Since this method progressively includes and analyzes

all data points of the time series, it is suitable for on-line change-point detection: Sudden

changes in the statistics of the data points, in the type of correlation or in the statistical

variance, or both, are reliably indicated and localized in time. This is first shown for numerous

artificially generated data sets of Gaussian random numbers. Also time series with various

non-stationarities, such as non-polynomial trends and ‘‘spiking’’, are included as examples.

Although generally applicable, our method was specifically developed as a tool for numerical

sleep evaluation based on heart rate variability in the ECG-channel of polysomnographic

whole night recordings. It is demonstrated that PDFA can detect specific sleep stage

transitions, typically ascending transitions involving sympathetic activation as for example
see front matter r 2004 Elsevier B.V. All rights reserved.

.physa.2004.10.026

nding author. Tel.: +43512 507 3550; fax: +43512 507 2860.

dress: Monika.Ritsch-Marte@uibk.ac.at (M. Ritsch-Marte).

www.elsevier.com/locate/physa


ARTICLE IN PRESS

M. Staudacher et al. / Physica A 349 (2005) 582–596 583
short episodes of wakefulness, and that the method is capable to discern between NREM sleep

and REM sleep.

r 2004 Elsevier B.V. All rights reserved.

PACS: 05.45.Tp; 87.19.Hh; 89.75.Da
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1. Introduction

With the prevalence of digital data acquisition, time series analysis has become an
important tool applicable in fields as diverse as e.g. engineering, financial
mathematics, meteorology, and physiology. Also sleep research increasingly relies
on numerical methods to analyze and characterize digital recordings from the sleep
lab. These so-called polysomnographic recordings include electroencephalographic
(EEG) and electrocardiographic (ECG) data, as well as other information such as
eye movement, muscle tones, and breathing. Numerical methods, which were
developed for time series analysis of heart rate variability (HRV) in healthy
probands as well as patients [1–8], have lately also been applied to data from the
ECG-channel of the polysomnography; this allowed a characterization of various
sleep stages by means of the heart beat rate. It was found that sleep stages (light
sleep, deep sleep, REM sleep) significantly differ in the type of correlation in the
heart beats. For instance, the so-called Detrended Fluctuation Analysis (DFA), first
introduced in Ref. [9] in a different context, has demonstrated that REM-sleep and
periods of wakefulness display a long-time memory which is absent in light sleep and
deep sleep [10,11].

In this work, we first introduce a new scaling-dependent method suitable for
change-point detection. It takes the DFA, which has proven especially successful in
the context of analyzing sleep, as a starting point. We call our new method
‘‘progressive detrended fluctuation analysis’’ (PDFA), because it analyzes the data
points progressively. In our particular example this is a time series comprising the
time intervals between the R-wave peaks of two subsequent heart beats (RR-
intervals) derived from the sleep ECG. The suggested method allows continuous on-
line method processing of the data extracted from an entire whole night recording.
Although real-time evaluation may not always be possible, the method is able to
follow the changing pattern of successive sleep stages on an intrinsic time-axis. There
is no restriction to analyzing a single sleep stage that was specifically isolated
beforehand. DFA, in contrast, at once requires the whole data-set for evaluation or
specific segments cut from the data set (for example single sleep stage segments that
were specifically isolated beforehand).

The intention of the present paper is to demonstrate the capability of the suggested
method to detect change-points in the statistics by applying it first to artificially
produced data and second to data from our sleep lab. In the latter context we only
briefly summarize the answers to some questions that motivated the development of
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the presented method, for more details we refer to Ref. [12]. In particular we
demonstrate the feasibility to detect transitions between certain sleep stages (as e.g.
short episodes of wakefulness and ascending transitions involving a rise in
sympathetic activation). Moreover, we suggest a new way to utilize the scaling-
dependence itself to differentiate between episodes of non-REM (NREM) sleep from
REM sleep and wakefulness. Other on-line methods to detect heterogeneities in time
series, involving wavelet or Hilbert transformations, local Hurst exponents and other
scaling-dependent and scaling-independent measures [13] have recently been applied
in similar contexts [14–16]. For the validation of our new method we have
simultaneously applied other numerical methods, for example based on wavelet
transform, to the time series.
2. Definition of the progressive detrended fluctuation analysis (PDFA)

For comparison with our new approach, let us briefly outline the DFA algorithm
(for details see e.g. Refs. [17–19]), which is a scaling analysis method developed for
problems associated with non-stationary time series containing e.g. polynomial
trends. For analyzing a time series ftkg of total length N (with k ¼ 1; . . . ;N), first the
average hti ¼ 1

N

Pl
k¼1 tk is subtracted. Then the integrated time series yðlÞ ¼Pl

k¼1ðtk � htiÞ is divided into non-overlapping segments of equal length n. In first-
order-DFA, in each segment a least-squares line is fitted to the data, representing the
local linear trend in that segment. The coordinates of the straight line segments are
denoted by ytrend ðlÞ: Finally, the standard deviation of the integrated time series from
the linear trends

F ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

l¼1

½yðlÞ � ytrend ðl; nÞ

2

vuut (1)

depends on the segment size n and thus represents a scale-dependent measure. This
definition can easily be extended to time series with higher polynomial trends: in qth
order DFA, trends of polynomial order q in the integrated time series and of order
ðq � 1Þ in the original time series ftkg are eliminated.

Usually one derives a scale-independent coefficient, the fluctuation exponent a as
the slope of log F ðnÞ versus log n [19]. For segments of uncorrelated data (‘‘white
noise’’) a is equal to 0:5: If there are only short-time correlations, the initial slope will
be different from 0:5; but a will approach 0:5 for large segments. 0:5oap1 indicates
persistent long-range power-law correlations, meaning that a value larger than the
average of the time series is more likely to be followed by another exceedingly large
value than by a smaller value, and vice versa. In contrast, 0oao0:5 indicates a
different type of power-law correlation such that large and small values of the time
series are more likely to alternate. For aX1 correlations exist, but cease to be of a
power-law form.

DFA was developed as a method to investigate the long-range fluctuation
correlations in a given time interval, where it is typically assumed that the type of
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correlation is unknown, but does not change during the time interval to be
investigated. The DFA method is not an appropriate tool to detect abrupt changes in
the statistics occurring at a specific time, although it is possible to derive some
information on the type of correlations contributing to a signal comprised of
segments with different statistical properties from the crossover behavior [20].
However, since all points of the complete data-set (from the beginning to the end of
the recording in time) are taken into account in every calculation step, there is no
progressive time-axis and, consequently, it is impossible to localize the statistical
change-points accurately in time.

PDFA, on the other hand, creates an intrinsic time-axis by progressively extending
the data-set data point for data point. Analogous to DFA, first a cumulative time
series yðlÞ is generated for the whole data-set. However, in contrast to DFA, not the
total time series is divided into segments of length n and analyzed in one step, but
partial sums of length p (p ¼ 1; . . . ;N), covering an increasing part of the total time
series, are created and analyzed separately. Each partial sum is divided into non-
overlapping segments of length n starting from the beginning, and the local trends
are eliminated in each segment. Note that in contrast to DFA, where the window size
n is varied, here the segments thus are all of constant length n (except for the last one
containing the remaining points). Fig. 1 visualizes this difference graphically.

In order to eliminate local trends to qth order, in each segment a polynomial of
order q is fitted to the partial sum and the deviations from the partial sum and the
polynomial are calculated. Introducing the following function of the partial sum
length p (i.e., of the length of the evaluated time interval p ¼ 1; . . . ;N)

P½n
ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

l¼1

½yðlÞ � ytrend ðl; nÞ

2

vuut ; (2)

we have defined a scale-dependent measure, which (apart from the partial sum index
p) also depends on the chosen window length n. As a reminder of this implicit
scaling-dependence we tag the PDFA fluctuation function with the subscript n½ 
: Let
us remark that there is no prefactor 1=p included in the square root (as compared to
the factor 1=N in Eq. (1)); thus P½n
ðpÞ does not represent a proper fluctuation
variance. We have investigated both forms, with and without the factor 1=p; but find
the definition as in Eq. (2) more convenient, since it suppresses the part of the curves
N points (total data-set) N points (total data-set)
change in statistics from here on change in statistics from here on

Detrended Fluctuation analysis (DFA) Progressive Detrended Fluctuation analysis (PDFA)

... (more calculational steps in between)

... (more calculational steps in between) ... (more calculational steps in between)

...

...

Fig. 1. Schematic diagram visualizing the difference between DFA and PDFA.
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belonging to only few points included (with intrinsically poor statistics), and also
since it leads to monotonically rising curves which we find easier to read, especially
when overlaying curves for several window sizes n. As we shall demonstrate below,
repeated analysis of progressively growing partial sums with increasing time interval
length allows reliable detection and accurate localization of statistical changes
occurring at a particular time. The calculational effort is comparable to DFA.
3. Change-point detection in artificial data-sets

We have thoroughly tested the above defined scaling-dependent measure P½n
ðpÞ on
various kinds of numerically generated artificial data-sets. Furthermore, in order to
eliminate any residual doubt about systematic errors stemming from the analysis of
only ‘‘quasi-random numbers’’, we have also tried the method on segments of true
random numbers derived from a physical quantum random number generator
accessible on the internet [21]; no different behavior was found. In the following we
will show examples that were derived using an algorithm based on Fourier-
transformation [22], which can generate sequences of random numbers with
selectable long-range correlations, i.e., with an autocorrelation function CðnÞ � n�g

with 0ogo1 [19]. The Fourier-approach allows the straightforward generation of
segmented ‘‘patchwork’’ time series with predefined change-points where the
statistics (i.e., either the correlation exponent g or the standard deviation s of the
random numbers, or both) change abruptly. Such artificial data-sets represent a
perfect test scenario for detecting abrupt changes in correlation.

In Fig. 2 we show the results for the ‘‘PDFA change-point segmentation’’ of a
data-set with two built-in change-points, consisting of a patchwork of 3 segments of
random numbers of identical Gaussian distribution function with variance s ¼ 1: the
first and the third contain uncorrelated random numbers (i.e., the fluctuation
exponent a introduced in Section 2 equals 0.5), whereas the random numbers in the
middle segment are long-range correlated (a ¼ 0:8). Using the relation g ¼ 2ð1� aÞ
which holds for the case of long-range correlations (see e.g. Ref. [19]) the
corresponding autocorrelation coefficients g can be calculated from the fluctuation
exponents a: In Fig. 2, the numerically evaluated variance and a calculated by first-
order DFA are indicated for each segment; they agree well with the chosen input
parameters. The PDFA norm P½n
ðpÞ; as defined in Eq. (2), is plotted on the left for
n ¼ 50: The two built-in change-points, which occur at the data points 5000 and
10 000 (marked by arrows), are clearly visible as ‘‘kinks’’ in the curve. To make this
even more visible on the right we also show the local slope of the PDFA curves
derived by numerical differentiation of the doubly logarithmic representation of the
curves. By definition P½n
ðpÞ is a monotonically growing square root function with a
slope levelling out towards the end of the data-set. If calculational time is not an
important issue, it is possible to process the data-set twice, i.e., backwards and
forwards, and average the two; this was done to derive the slopes displayed on the
r.h.s of Fig. 2.
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Fig. 3. Two change-points: the first in the DFA fluctuation exponent a (indicating a different

autocorrelation coefficient g ¼ 2ð1� aÞ) and the second in the standard deviation s for various window

size parameters n from 3 to 10.
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Fig. 2. Change-point detection for artificial data with two built-in change-points. The first and the third of

3 segments contain uncorrelated random numbers, the middle segment long-range correlated random

numbers. Left: PDFA function with P½50
ðpÞ; right: local slope of the PDFA function obtained by

numerical differentiation in a doubly logarithmic scale.
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In the example discussed in Fig. 2, the 3 segments of Gaussian random numbers
have different correlation coefficient g; but the same standard deviation s: Another
example in Fig. 3 contains a first change-point, where only the correlation is altered
(and the statistical variance kept constant) and a second change-point with fixed g
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and altered s: For the case of a mere change in statistical variance (but unaltered
correlations) we find as a general behavior that the slopes of the PDFA curves in
double logarithmic scales for uncorrelated or long-range correlated random numbers
undergo a change that is independent of n, i.e., a homogeneous shift for all short and
long window sizes. A similar behavior is well-known for the DFA. For a ‘‘g-change
point’’, on the contrary, one has to distinguish between long and short window size:
for small n the slopes of long-range correlated numbers lie below those for
uncorrelated numbers, for large n this is reversed.

However, in view of practical applications the important question is ‘‘What
happens when a change in autocorrelation coefficient is accompanied by a change in
the standard deviation of the random numbers?’’. For many applications, for
instance during a transition to REM sleep, the change in correlation is typically
accompanied by a change in the standard deviation of the heart beat intervals. It
might even be argued that in some time series a change in statistics may accidentally
be masked by an accompanying change in the statistical variance. In view of what
has just been said above, however, this can never be so for all possible window sizes
n. This is illustrated in Fig. 4, where the combined change in g and s is indeed masked
for the n ¼ 8 curve, but not for the entire set of curves. Whether the two parameter
changes add up or act ‘‘antagonistically’’ depends on the window size. This effect can
be seen in Fig. 4, where the curves with window sizes n ¼ 3–7 fall below the extended
‘‘no change-point’’ curve, whereas the curves with n ¼ 8–12 turn steeper. All of this
implies that PDFA can in fact discern between changes in correlation and changes in
statistical variance, provided several curves for varying window size are calculated.

In practical contexts one frequently encounters time series with strong trends
which can only piecewise be approximated by polynomial trends. Sinusoidal trends,
for instance due to seasonal or circadian oscillations of a variable, are a common
Fig. 4. Simultaneous changes in correlation coefficient and statistical variance may mask the change-point

for the curve belonging to a particular window size (here n ¼ 8), but never in the entire set of curves.
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example. Moreover, the trends themselves may be non-stationary in their nature. As
long as these temporal changes stay on a time scale which is small compared to the
chosen PDFA window sizes, the PDFA curves will not be affected. As an example
we have added a sinusoidal trend of period 3000 to the time series of Fig. 2 and
analyzed it with PDFA. Fig. 5(a) shows the original time series, (d) the resulting time
series, and (b) and (c) the smoothed PDFA curves of both time series (same seeding
for the quasi-random numbers). Obviously the sinusoidal trend did not affect the
performance of the PDFA method. As for DFA, it is possible to eliminate trends
requiring higher polynomial fits by going to higher order PDFA.

‘‘Spiking’’, i.e., the presence of narrow peaks which are often of external origin
and not related to the intrinsic system dynamics, is another common problem
inherent in many real data-sets. Therefore, this issue has been discussed in the
literature [20]. In the following we discuss the performance of PDFA for ‘‘change-
point segmentation’’ in the presence of spikes. To this end we have generated data-
sets with abundant spiking by adding 4% of random (uncorrelated) large-amplitude
spikes to a time series of true random numbers (cf. Fig. 6). It can be seen in Fig. 6
that the spikes affect the curves corresponding to small window size n more than it
affects the curves belonging to large window-size n, which is only to be expected for
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Fig. 5. Sinusoidal trend: (a) original time series without the trend; (b) PDFA curves for the original time

series; (c) PDFA curves for the new time series; (d) time series with added sinusoidal trend.
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Fig. 6. Impact of spikes on the PDFA analysis: (a) time series without spikes; (b) PDFA curves for

original time series; (c) PDFA curves for time series with spikes; (d) time series with 4% of uncorrelated
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such temporally narrow features. The same behavior was also found in sleep data-
sets with ‘‘spikes’’ stemming from movement artifacts during the polysomnographic
recording, which could be identified as such (by the numerical analysis) because of
their prevalence to the small-n curves.
4. Application to sleep lab data

The starting point for the numerical analysis of sleep ECG was the extraction of
the time series of RR-intervals (i.e., the time lapse between two subsequent R-waves)
from the digitized ECG-channel of the polysomnographic recording by a home-
made computer-program. The program compares the values of the ECG data with a
reference curve, keeping only data points exceeding the reference curve. The
reference curve is a piecewise constant function of steps with both, the grid interval
length and the height of the steps (in comparison to the local maximum in the given
grid interval), being freely selectable. Within the remaining points the actual maxima
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are obtained by direct comparison of neighboring points. Any of these maxima is
accepted as an ‘‘R wave peak’’, only if the distance to the last such peak is larger than
a chosen limit. On the other hand, if a reconstructed RR-interval exceeds the
estimated length by a pre-selected factor, a visual control window is opened that
allows to look for R waves that were possibly missed, e.g. due to problems with the
recording. For a data-set of length 30 000 s (typically corresponding to a file size of a
few 10MByte) with about 27 000–29 000R waves, on a Pentium IV PC with 1GByte
RAM our ‘‘R finder’’ algorithm takes 15–70 s, depending on the sampling rate, on
the noise level and on the number of artifacts (e.g. movement artifacts) in the
recording. For normal, i.e., non-pathological, ECG recordings of reasonable quality
the number of cases requiring visual assessment and manual correction remained
well below 10 reported incidents per data-set.

None of the data-sets discussed below contained extrasystoles. However, for other
recordings with regularly occurring extrasystoles we have checked that it is possible
to detect all extrasystoles or to suppress them by choosing a suitable ‘‘critical
distance parameter’’. Furthermore, a strong drift in the ECG baseline may be
countered by finer time interval length. The fact that this procedure allows interactive

checking of the resulting RR-intervals is very important for monitoring the quality
of the time series data generated. On the other hand, the possibility to change the
pre-set sensitivity to deviations from the ‘‘typical’’ pattern avoids unnecessary and
cumbersome interruptions of the data processing: dealing with a problematic data-
set, for instance, one may start off with initially quite narrow margins for tolerated
deviations, and then successively relax these conditions to a level where the number
of reported incidents is reduced to the necessary level.

Furthermore, we emphasize that our method does not require any assumptions on
the parametric dependence of the underlying process(es) giving rise to the time series.
Conversely, our approach might be helpful for gaining insight into the sleep
dynamics and for formulating or testing physiological sleep models. The dynamics of
sleep–wake transitions, for instance, has been investigated and modelled [23], and
stochastic signals have been designed to closely resemble the heart beat dynamics of
wake or various sleep stages [24]. One of the questions being investigated involves the
feasibility to specifically detect vegetative arousals [25] with this method. The
intention and the scope of the present paper, however, is restricted to demonstrating
the feasibility of the approach by concentrating on examples chosen from typical
sleep data-sets exemplarily. Normal night recordings (i.e., following an adaptation
night in the sleep lab) from young and healthy male probands were included. These
sleep data-sets contained the normal percentage of NREM and REM stages within
the physiological sleep cycle pattern. Finally we remark that for the comparison of
the numerical results with the manual scoring, exact synchronization of all types of
recordings is of paramount importance (no time-leaps, omissions, etc.).

In the following examples we have super-imposed several PDFA curves,
corresponding to various selected window sizes, on a color-coded sleep stage
diagram derived independently and prior to numerical analysis by manual scoring of
the polysomnography according to the most widely accepted Rechtschaffen and
Kales criteria [26]. A change in hue of the curves from red to blue indicated an
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increase in window size n (cf. color-coded bar attached at the right side in units of
heart beats).

In Fig. 7 we have chosen an example from our analyzed data, where the following
typical behavior can be observed: transitions from ‘‘deeper’’ sleep stages to ‘‘lighter’’
sleep stages (e.g. 4 ! 3) are clearly indicated as pronounced steps in the curves, but
not so for descending transitions (e.g. 3 ! 4). This is a general effect which we have
found to be present in a large number of data-sets (to date about 50) recorded from
healthy young probands [12]. A more extended statistical evaluation of this effect is
under way. In view of the experience gained from artificial data (cf. Fig. 2), we think
that the occurrence of such steps can be attributed to short intervals of arousals
between the sleep stages in ascending transitions, which are particularly well detected
by our algorithm. Note also the different average slope in the REM sleep stage just
before 6 h after beginning of the recording in Fig. 7, compared to the sleep stage 2
just after 6 h, as expected due to the larger scaling coefficient a and the larger
variance s typical for the long-time correlated REM sleep. In Fig. 8 we have selected
another example from a different whole night recording which demonstrates the
capability of our algorithm to detect short embedded incidents of wakefulness, which
typically become more frequent closer to awakening in the morning.

Figs. 7 and 8 also illustrate the relevance of the window size parameter n for the
trade-off between high detection sensitivity and high time-resolution: Choosing a
small window size for the complete analysis leads to good time-resolution of the
transition time, however, at the cost of visibility due to a less pronounced pitch of the
steps in the curve. On the other hand, for a larger window size the transitions become
more conspicuous at the cost of reduced transition time, which is limited by the size
of the window.
Fig. 7. A typical example for PDFA functions for various window sizes overlaid on the manually scored

color-coded sleep stage diagram of a whole night. (For colour reproduction of this figure see on-line

publication.)
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Fig. 8. Detecting short episodes of wakefulness. (For colour reproduction of this figure see on-line

publication.)
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To distinguish NREM sleep from REM sleep we suggest to utilize the built-in
scaling dependence: Scanning the PDFA scaling parameter, i.e., the window size n,
across the correlation time of NREM-sleep (which is around 6 heart beats for light
sleep [10]), there is a striking difference between periods of REM and NREM sleep.
If one superposes several numerically differentiated PDFA curves, episodes of
NREM sleep are characterized by a splitting (or ‘‘dispersion’’) of the curves
belonging to different window sizes (Fig. 9a), which is absent in REM sleep.
Applying the general considerations from Section 3 (in particular the discussion of
the second change-point in Fig. 3), we can immediately conclude that NREM sleep
cannot be long-range correlated from just viewing Fig. 9, since in NREM sleep the
(red) curves belonging to small window sizes are seen to have steeper slopes than the
(blue) curves for long window size. In fact, in contrast to REM sleep and
wakefulness, NREM sleep is known to be short-range correlated. REM and
wakefulness, on the other hand, are known to be long-range correlated and are
typically also characterized by a larger variance in the heart beat intervals. However,
since REM and wakefulness are long-range correlated, and thus the corresponding
correlation times exceed any finite time, one cannot see any significant window-size
dependence in the slopes.

For the sake of validation and comparison we have carried out a corresponding
calculation on another scale-dependent measure which allows analysis across the
data-set. We have chosen the wavelet transform standard deviation swavðmÞ

described in Ref. [13], where several scale-dependent and scale-independent measures
are compared. For our purpose we calculated swavðmÞ for a subset of 200 data points
(about 3min) which continuously moved through the whole data set. When the
scaling parameter m, which here relates to the width of the chosen wavelet basis, was
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Fig. 9. A ‘‘scaling-parameter dispersion’’ is clearly visible in periods of NREM sleep and absent in REM

sleep. Top: window-size dispersion for PDFA, bottom: scaling-parameter dispersion for wavelet transform

standard deviation swavðmÞ: The graphs also demonstrate that the peaks indicating changes in the heart

rate statistics coincide for both methods throughout the data-set. (For colour reproduction of this figure

see on-line publication.)
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scanned in a similar range as n, after having pulled all curves, which typically
increase with m, to the same baseline, we saw an analogous pattern of ‘‘scaling
parameter dispersion’’ emerging (see Fig. 9b). Furthermore, Fig. 9 convincingly
demonstrates that the PDFA measure and the wavelet transform standard deviation
measure are sensitive to the same features in the heart rate statistics, as indicated by
coinciding peaks for these two independent methods.

The fact that such a ‘‘scaling-parameter dispersion’’, as one might call it, is only
present in NREM sleep, can be explained by noting that the correlation time for the
long-time correlated sleep stages REM-sleep and wakefulness exceeds any
window size. This suggested approach reliably differentiates episodes of NREM
and REM sleep visually along the data-set, and thus seems to be a useful tool for
‘‘REM versus NREM’’ staging based on the heart beat statistics alone,
complementing other methods. In this context one should mention that a
disadvantage of the PDFA method is the longer computation time compared to
the wavelet analysis which utilizes a fast algorithm applicable for scales that are
integer powers of 2 (m ¼ 2j).
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5. Conclusions and outlook

Summarizing, in the present paper our intention was first to introduce an
alternative and independent change-point detection method, to demonstrate its
capability to detect change points in the statistics of artificially produced non-
stationary correlated random numbers and second to discuss its perspective of
application to sleep research. On the artificially generated data-sets with built-in
change points we conclude that the approach is very powerful for detecting change
points in time series—even in the presence of non-polynomial trends and spiking. We
have demonstrated that change points which are characterized by an abrupt (or at
least non-adiabatical) change in either statistical correlation or statistical variance
(or both) of the data points are reliably and accurately localized in time.

Our opinion concerning sleep lab applications, which was gained by analyzing
48 data-sets of whole night recordings so far from 19 healthy male probands
with a mean age of about 30 years, is more complex: We have seen a clear indication
that the suggested algorithm is capable of detecting particular transitions
between sleep stages, typically from deeper to lighter sleep (e.g. from sleep stage 4
to stage 3, but not vice versa [12]). We believe that this asymmetry is due to
changes in the state of the autonomous nervous system which represent detectable
change-points for our method which are only present in markedly ascending
transitions. The sleep data results gained by PDFA were validated by a comparison
with other independent measures (i.e., a wavelet analysis). It was found that they
were sensitive or insensitive, respectively, to exactly the same sleep stage transitions.
This fact, of course, rules out any over-ambitious attempts to detect all sleep
stage transitions occurring during the night by an on-line processing based on this
approach.

Nevertheless, it is possible to extract valuable information from the on-line
monitoring of the HRV: We suggest to utilize the scale-dependence in the form of a
‘‘scaling-parameter dispersion’’ (for scale-dependent measures such as PDFA or
wavelet analysis calculated progressively along the data-set) for the differentiation
between NREM and REM sleep. In the future this may develop into a tool for on-
line (possibly even real-time) assessment of NREM versus REM sleep. Naturally, the
information included in the ECG curve alone is considerably less than
the information contained in the total polysomnographic recordings (EEG, EOG,
EMG, etc.). Therefore, we view our approach as a supplementary easy-to-
implement method, which might serve as a useful first screening tool (e.g. for
distinguishing REM from NREM) together with other methods analyzing the heart
rate variability.

And finally, motivated by our surprising finding that only ascending transitions
(in particular into wakefulness) give rise to a signal in our numerical analysis, we
intend to assess the usefulness of the method to detect autonomous arousals, which
might be the underlying reason for a ‘‘change point’’ detected by our numerical
analysis. We intend to investigate their role and their relation to sympathetic
activation, which can alternatively be determined by spectral analysis methods [27]
and by noninvasive measurements [28].
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(Jubiläumsfondsprojekt No. 9302).
References

[1] P.Ch. Ivanov, et al., Chaos 11 (2001) 641–652.

[2] P.Ch. Ivanov, et al., Nature 399 (1999) 461–465.

[3] C.-K. Peng, S. Havlin, H.E. Stanley, A.L. Goldberger, Chaos 5 (1995) 82–87.

[4] Y. Ashkenazy, et al., Phys. Rev. Lett. 86 (2001) 1900–1903.

[5] P.Ch. Ivanov, et al., Europhys. Lett. 48 (1999) 594–600.

[6] L.A. Amaral, et al., Phys. Rev. Lett. 81 (1998) 2388–2391.

[7] L.A. Amaral, et al., Phys. Rev. Lett. 86 (2001) 6026–6029.

[8] T. Penzel, et al., IEEE Trans. Biomed. Eng. 50 (2003) 1143–1151.

[9] C.-K. Peng, et al., Phys. Rev. E 49 (1994) 1685–1689.

[10] A. Bunde, et al., Phys. Rev. Lett. 85 (2000) 3736–3739.

[11] J.W. Kantelhard, et al., Phys. Rev. E 65 (2002) 051908(1)-041107(6).

[12] S. Telser, M. Staudacher, Y. Ploner, A. Amann, H. Hinterhuber, M. Ritsch-Marte, Somnologie 8

(2004) 33–41.

[13] M.C. Teich, et al., in: M. Akay (Ed.), Nonlinear Biomedical Signal Processing, vol. 2, IEEE Press,

New York, 2001.

[14] P.Ch. Ivanov, et al., Physica A 249 (1998) 587–593.

[15] Z.R. Struzik, Fractals 9 (2001) 77–93.

[16] P. Bernaola-Galván, P.Ch. Plamen, L.A. Nunes Amaral, H.E. Stanley, Phys. Rev. Lett. 87 (2001)

168105(1)-168105(4).

[17] K. Hu, et al., Phys. Rev. E 64 (2001) 011114(1)-011114(19).

[18] J.W. Kantelhard, et al., Physica A 316 (2002) 87–114.

[19] J.W. Kantelhard, et al., Physica A 295 (2001) 441–454.

[20] Z. Chen, P.Ch. Ivanov, K. Hu, H.E. Stanley, Phys. Rev. E 65 (2002) 041107(1)-041107(15).

[21] True random numbers generated using a physical quantum random number generator can be

downloaded from a website provided by a collaboration between the University of Geneva (N. Gisin)

and the company id Quantique http://www.randomnumbers.info/index.jsp.

[22] H.A. Makse, S. Havlin, M. Schwartz, H.E. Stanley, Phys. Rev. E 53 (1996) 5445–5449.

[23] C.-C. Lo, et al., Europhys. Lett. 57 (2001) 625–631.

[24] J.W. Kantelhardt, et al., Europhys. Lett. 62 (2003) 147–153.

[25] M.H. Kryger, T. Roth, W.C. Dement, Principles and Practice of Sleep Medicine, 3rd ed., W.B.

Saunders Company, Philadelphia, 2000.

[26] A. Rechtschaffen, A. Kales, A Manual of Standardized Terminology, Techniques and Scoring System

for Sleep Stages of Human Subjects, NIH Publ 204, US Gov Print Off, Washington, 1968.

[27] M.H. Bonnet, D.L. Arand, Electroencephalogr. Clin. Neurophysiol. 102 (1997) 390–396.

[28] T. Penzel, U. Brandenburg, R. Fricke, J.-H. Peter, Somnologie 6 (2002) 69–73.

http://www.randomnumbers.info/index.jsp

	A new method for change-point detection developed for on-line analysis of the heart beat variability during sleep
	Introduction
	Definition of the progressive detrended fluctuation analysis (PDFA)
	Change-point detection in artificial data-sets
	Application to sleep lab data
	Conclusions and outlook
	Acknowledgements
	References


